rú
【中文名称】铷
【英文名称】rubidium
【结构或分子式】
【晶体结构】晶胞为体心立方晶胞,每个晶胞含有2个
金属原子。
莫氏
硬度:0.3
声音在其中的传播速率:(m/S)
1300
【相对分子量或原子量】85.4678
【
密度】1.532
【熔点(℃)】38.89
【沸点(℃)】688
【符号】Rb
【性状】
银白色蜡状金属。质软而轻.是制造光管的材料,铷的
碘化物可供药用.
【用途】
用于制光电池、光电管和催化剂等。
【制备或来源】
可由电解熔融的
氯化铷或氰化铷而得。自然界中铷盐存在于矿物水,也有少量氯化铷存在于光卤石中。
【其他】
化学性质比
钾活泼。在光的作用下易放出电子。遇水起剧烈作用,生成
氢气和氢
氧化铷。易与氧作用生成氧化物。
氧化物离解能(Do):3.6(eV)
元素电离能(Ei):4.18(eV)
主要吸收线及其主要参数:
┌────┬───┬──┬──┬───┬───┬───┐
│λ(nm) │f │ W│F │ S* │CL│ R·S │
├────┼───┼──┼──┼───┼───┼───┤
│780.0 │0.80│ 2.0│A-A │0.5 │ │1.0 │
│794.8 │0.40│ 2.0│A-A │1.0 │ │2.0│
│420.2 │ │ 0.7│A-A │10 │ │120│
│421.6 │ │ 0.7│A-A │ │ │235│
└────┴───┴──┴──┴───┴───┴───┘
λ:波长
f:振子强度
W:单色器光谱通带
A- A(空气乙炔焰)
S*:元素的特征浓度(1%吸收灵敏度)
CL:元素的检测极限
R·S:同一元素主要吸收线间的相对灵敏度
F:火焰类型
长“眼睛”的金属——铷
十九世纪五十年代的开头,住在汉堡城里的德国化学家本生,发明了一种燃烧煤气的灯,这种本生灯现在在我们的化学实验室里还随处可见。他试着把各种物质放到这种灯的高温火焰里,看看它们在火焰里究竟有什么变化。
变化果真是有的!火焰本来几乎是无色的,可是当含
钠的物质放进去时,火焰却变成了黄色;含钾的物质放进去时,火焰又变成了紫色……连续多次的实验使本生相信,他已经找到了一种新的化学分析的方法。这种方法不需要复杂的试验设备,不需要试管、量杯和试剂,而只要根据物质在高温无色火焰中发出的彩色信号,就能知道这种物质里含有什么样的化学成分。
但是,进一步的试验却使本生感到烦恼了,因为有些物质的火焰几乎亮着同样颜色的光辉,单凭肉眼根本没法把它们分辨清楚。
这时,住在同一城市里的研究物理学的基尔霍夫决心帮本生的忙。他想既然太阳光通过三棱镜能够分解成为由七种颜色组成的光谱,那为什么不可以用这个简单的玻璃块来分辨一下高温火焰里那些物质所发出的彩色信号呢?
基尔霍夫把自己的想法告诉了本生,并把自己研制的一种仪器——分光镜交给了他。
他们把各种物质放到火焰上去,叫物质变成炽热的蒸气,由这蒸气发出来的光,通过分光镜之后,果然分解成为由一些分散的彩色线条组成的光谱——线光谱。蒸气成份里有什么元素,线光谱中就会出现这种元素所特有的跟别的元素不同的色线:钾蒸气的光谱里有两条红线,一条紫线;钠蒸气有两条挨得很近的黄线;
锂的光谱是由一条亮的红线和一条较暗的橙线组成的;
铜蒸气有好几条光谱线,其中最亮的是两条黄线和一条橙线,等等。
这样就给人们找到了一种可靠的探索和分析物质成份的方法——光谱分析法。光谱分析法的灵敏度很高,能够“察觉”出几百万分之一克甚至几十亿分之一克的不管哪一种元素。
分光镜扩大了人们的视野。你把分光镜放在光线的过道上,谱线将毫无差错地告诉你发出这种光线的物质的化学元素的成分是什么。
本生拿着分光镜研究过很多物质。在1861年,他在一种矿泉水里和锂云母矿石中,发现了一种产生红色光谱线的未知元素。这个新发现的元素就用它的光谱线的颜色铷来命名(在拉丁语里,铷的含意是深红色)。
铷的发现,是用光谱分析法研究分析物质元素成分取得的第一个胜利。
发电机上显奇技
大家知道,我们平常所用的电大多是用火力或水力生产出来的。烧煤的热能或水流的动能,先推动汽轮机或水轮机变成机械能,然后再带动发电机发出电来。从热能(或水能)到机械能再到电能,中间几经周折,能量损耗不少,效率当然很低。
那么,有没有一种操作简便而效率却很高的发电方式呢?
当然有。人们发现,铷原子的最外层电子很不稳定,很容易被激发放射出来。利用铷原子的这个特点,科学家们设计出了磁流体发电和热电发电两种全新的发电方式。
磁流体发电是使加热到二三千度高温的具有导电能力的气体,以每秒六百到一千五百米的速度通过磁极,凭借电磁感应而发出电来。
热电发电是从加热一头的
电极发出电子,而由另一头的电极接受,在两个电极之间接上导线,就会有电流不断产生和通过。
这样的发电方式多么简单,多么直截了当!热能直接变成电能,省掉了水力和火力发电时的机械转动部分,从而大大提高了能量的利用率。
当然,为获得磁流体发电所需要的高温高速的导电性气体也好,为进一步提高热电发电的电子流速度也好,都少不了要用到最容易发射电子,也就是最容易变成离子的金属铷。
铷在这方面的广泛应用,一定会给发电技术和能量利用带来一场新的重大的技术革命。